A continuación se mostrara el proceso tenido la obtención tanto de la Norma como la Distancia en el Producto Punto §

LA NORMA

La definición general de norma se basa en generalizar a espacios vectoriales abstractos la noción de módulo de un vector de un espacio euclídeo. Recuérdese que en un espacio no euclídeo el concepto de camino más corto entre dos puntos ya no es identificable con el de la línea recta; por ello, se utilizan las propiedades operacionales de la norma euclídea definida más arriba para extraer las condiciones que debe cumplir la "longitud de un vector", o norma vectorial, en un espacio vectorial cualquiera. Estas condiciones básicas son:
  • Siempre es no negativa e independiente del sentido (orientación) de la medición.
  • La longitud debe ser directamente proporcional al tamaño (es decir, doble -o triple- de tamaño significa doble -o triple- de longitud).
  • La longitud entre dos puntos será siempre menor o igual que la suma de longitudes desde esos mismos dos puntos a un tercero diferente de ellos (desigualdad triangular la suma de dos lados de un triángulo nunca es menor que el tercer lado, también generalizada en la desigualdad de Cauchy-Schwarz).

Se presentará la norma como


En nuestro producto Punto §, la Norma se presentara de la forma:



LA DISTANCIA
la distancia entre dos puntos del espacio euclídeo equivale a la longitud del segmento de recta que los une, expresado numéricamente. En espacios más complejos, como los definidos en la geometría no euclidiana, el «camino más corto» entre dos puntos es un segmento de curva, ahora se procederá a investigar qué tipo de distancia existirá en los puntos generados por nuestro Producto Punto §.